

Colle du 27/11 - Sujet 1 Intégrales et équations différentielles d'ordre 1

Question de cours. Enoncé et démonstration de l'intégration par parties.

Exercice 1. Déterminer l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que

$$\forall x \in \mathbb{R}, \quad \int_0^x f(t)(2x - 3t) \, \mathrm{d}t = \frac{x^2}{2}.$$

Exercice 2.

- 1. Décomposer en éléments simples $\frac{1}{X(1+X)}$.
- 2. Calculer $I = \int_0^1 \frac{1}{(1+x^2)^2} dx$ à l'aide d'une intégration par parties.

Colle de mathématiques PTSI

2023-2024

Colle du 27/11 - Sujet 2 Intégrales et équations différentielles d'ordre 1

Question de cours. Méthode de variation de la constante.

Exercice 1. Résoudre $(E): y' - \frac{t}{\sqrt{1-t^2}}y = \frac{t e^{\sqrt{1-t^2}}}{t^2 - 2t - 3}$.

Exercice 2. Résoudre sur \mathbb{R}_+^* l'équation $(E): 2xy' + y = \frac{1}{1+x}$.

Colle de mathématiques PTSI

2023-2024

Question de cours. Enoncé et démonstration de l'ensemble des solutions d'une équation différentielle d'ordre 1 à l'aide des solutions de l'équation homogène et d'une solution particulière.

Exercice 1. Justifier l'existence et calculer $I = \int_1^{e^2} \frac{\ln(t)}{t + t \ln^2(t)} dt$.

Exercice 2. Résoudre $(E): (1 + \operatorname{sh}(x)) y' + -\operatorname{ch}(x) y = (1 - \operatorname{sh}^{2}(x)) \operatorname{ch}(x).$

${\it Colle~du~27/11~-~Sujet~4} \\ {\it Nombres~complexes~et~calcul~alg\'ebrique}$

Question de cours. Démonstration de $|z+z'|^2=\dots$ et de l'inégalité triangulaire supérieure.

Exercice 1. Soient $(a, x, y) \in \mathbb{R}^3$. Résoudre le couple d'équations suivant :

$$\begin{cases} \cos(a) + \cos(a+x) + \cos(a+y) = 0\\ \sin(a) + \sin(a+x) + \sin(a+y) = 0. \end{cases}$$

Exercice 2. Soit
$$n \in \mathbb{N}^*$$
. Calculer $\sum_{1 \leq i < j \leq n} ij$.